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Current reversals in ratchets driven by trichotomous noise
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The colored three-level Markovian noise-driven nonequilibrium dynamics of overdamped Brownian par-
ticles in a spatially periodic asymmetric potentiahtche} is investigated. An explicit second-order linear
ordinary differential equation for the stationary probability density distribution is obtained for the process. In
the case of a piecewise linear potential with an additive three-lgnehotomou$ noise the exact formula for
the stationary current is presented. The dependence of the current reversals on the noise parameters is inves-
tigated in detail and illustrated by a phase diagram. Asymptotic formulas for the current for various limits of
the noise parameters are found and compared with the results of other authors. Applications to the fluctuation-
induced separation of particles are also discussed.

PACS numbes): 05.40—a, 05.60—k, 02.50—r

[. INTRODUCTION duced a kangaroo process as the driving force and found that
CR depends on the flatne@ke ratio of the fourth moment to
Within the past few years there has been considerablthe square of the second mompeaf the noise. Later, Mielke
interest in the problem of noise-induced transport in spatiallyf22] developed a method that allows us to calculate the cur-
periodic structures called ratchédtsr reference surveys see rent for a large class of processes including those discussed
[1,2]). The initial motivation in this field has come from the in [11], again in the case of a sawtooth potentgiecewise
cell biology, in particular the study of the mechanism oflinear potential, and found several other cases where CR
vesicles transport inside eukariotic cells, via motor protein®ccurs. Similarly, in[16] it has been shown that a periodic
along microtubuled?2,3]. It has been argued if3] that a  force can cause a CR depending on its amplitude and fre-
ratchet(a Brownian motor could extract energy from non- quency.
equilibrium fluctuations even if their mean value is equal to  Bartussek, Reimann, and Riggi [20] have presented CR
zero. Later on new systems with the same underlying idea a correlation ratchet driven by both an additive Gaussian
for transportation were propose@e.g. chemically driven white and an additive Ornstein—Uhlenbeck noise. Depending
motility of enzymatic Brownian particleg4], phase separa- on the choice of the ratchet potential, CR may occur at a
tion engineq5], growth of surface$6], and rectification in  specific value of the correlation time. For an inertia ratchet a
superconducting ringg7]). There are several categories of CR can be evoked by modifying the mass of the particles
models for stochastic ratchdts—3,8—12. It should be noted [21,24].
that the dynamics in ratchet structures with its inherent spa- The effect of CR in combination with the stationary car-
tial asymmetry generally exhibits a rich complexity, such asrier density has been considered 5,26, where the diffus-
the occurrence of multiple current reversals and multipeakethg particles were interacting and the ensuing ratchet current
current characteristidd,2]. A particularly appealing feature described a collective dynamics.
of Brownian motors is their ability to separate particles of In [17-19 calculations are presented for a three-level
different friction strength or madgd]. It is well known that  Markovian stochastic force and approximations for the mean
the net current in a periodic ratchet potential fluctuating rancurrent have been carried out for the limits of slow and fast
domly between a flat and a nonflat state is always biased inoise. It has been shown that the direction of the current may
one direction, independent of the correlation time of the fluc-depend on the correlation time of the noise as well as on the
tuation[10,13. In some cases current rever§aR) could be  flatness parameter. These models are potentially very useful,
observed, i.e., the current changed its direction in certaibbecause CR could lead to a more efficient fluctuation-
parameter regions of the mod&,11,14—27. Millonas and  induced separation of particl¢8,17]. Nevertheless, most of
Dykman have discussed the generation of CR in a stationanhe results have been obtained by numerical methods or for
periodic potential induced by a Gaussian force noise with dimits of slow and fast noises. There are almost no exact
nonwhite power spectrurfil4]. Chauwin, Ajdari, and Prost results for correlation ratchets, enabling us to quantitatively
[9] have suggested that CR can be obtained in the two-statvaluate the values of the noise parameters corresponding to
ratchet model if the long arm of the ratchet is kinked. BierCRs for concrete models, or giving sufficient and necessary
and Astumian have also found CR in a fluctuating three-stateonditions for their existence. This is caused, first and fore-
model [15]. Doering, Horsthemke, and Riordgf1] intro-  most, by the fact that even simple model ratchets display a
rich variety of behaviors that vary remarkably with the sys-
tem parameters. Capturing the full range of these
*Electronic address: ain@tpu.ee possibilities—and the transitions between them—as several
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parameters change, is quite difficult with numerical solutions (f(t),f(t’))=<a2)e‘ v\t—t'\zzqage— ve—t'|
alone.

In this paper we consider one-dimensional overdampegt can be seen that the switching ratés the reciprocal of the
dynamical systems determined by a first-order differentiahoise correlation time
equation with a periodic potential and an additive noise term
composed of a trichotomous process, which is a three-level v=1/rc.
stationary telegraph process characterized by three paral
eters: amplitude, e (0,), correlation timer;e (0°), and
flatnessep e (1,0) [28,29. In order to get the results in a * 2
closed form for all values of the noise parameters, the noise 02=2J0 (f(t+7).f(1))d7=4qap/v. “)
is applied to piecewise linedisawtooth potentials, which
have been considered as applicable to scientific and engihe flatness parameter proves to be a very simple expres-
neering problems as good approximations to potentials megion of the probabilityg
in the real world[30]. e 22

The purpose of this paper is to provide exact analytical e=(F)/(T(1)"=112q). ®)
results for the stationary curredtover extended noise pa- Next, we consider an overdamped motion in an asymmet-
rameter regimes for the system. Interpreting the qualitatively;. periodic potential (x) with the periodL. The process is
different shapes of the dependenceJobn the correlation driven by the trichotomous nois&t). The motion is de-

time 7. as different phases in the phase space of the parant.ipeq by the stochastic differential equation
eters¢ and a,, we have constructed comprehensive phase

diagrams to demonstrate the noise-induced transitions. Here
we succeeded in reaching the exact conditions which bring
forth CR.

The structure of the paper is as follows. In Sec. Il thewherex is the viscous friction strength. By applying a scal-
model and exact differential equation for the stationary probing of the form
ability density are presented. The current for periodic poten- ~ ~ ~ ~
tials in the addiabatic limit is investigated. In Sec. Il a dy- x=x/L, t=tlty, f=fL/Uy, V(x)=U(x)/Uq
namical system with a periodic sawtooth potential is . . . . .
considered. The exact stationary current is found. In Sec. e get. a dmensmnless formulaﬂon gf the dynamics W,'th the
the behavior of the current at different limits, such as thePotentialV with the property/(x)=V(x+1). By the choice
slow noise limit, large amplitude limit etc., is analyzed. In to=«L“/U, the dimensionless friction coefficient turns to
Sec. V the current reversals are subjected to a closer considDity- The rescaled noise parameters are given by
eration. The dependence of CR on the noise parameters is

"the noise intensity is

dx dU(x)
Ka=h(x)+f(t), h(x)=- ax (6)

- 2 P
investigated and comprehensive phase diagrams are pre- =l IUo, a0=Lag/Uo. 7)
sented. Section VI contains some concluding remarks. From now on we shall use only the dimensionless dynam-
ics and omit the tildes. The dynamics reads
II. TRICHOTOMOUS MARKOVIAN NOISE
X dV(x)
Here we explicate the idea of dichotomous noise further a:h(XH f(t), h(x)=- dx ®

to a symmetric three-level random telegraph procE43
called thetrichotomous procesf28]. This is a random sta- The corresponding composite Fokker—Planck master equa-
tionary Markovian process that consists of jumps betweetion for our problem is
three valuesa=a;,0,— ay. The jumps follow in time accord-
ing to a Poisson process, while the values occur with the_ Pn(X,t)Z—i{[h(X)Jran]Pn(X,t)}JrE UpnPr(X,1),
stationary probabilities ot X m .

9

Ps(ap)=Ps(—ag)=0, Ps(0)=1-2q. ()
with P,(x,t) denoting the probability density for the com-
The transition probabilities between the stafés)=*+a, bined processxa,,t); n,m=1,2,3; a;=—ay, a,=0, ag

and 0 can be obtained as follows: =a, and
P(*xag,t+70t)=P(—ag,t+ 7|ag,t)=P(ag,t+ 7/ —ag,t) q-1 q q
—q(l-e "), U=v| 1-29 -2q 1-2q|. (10
-1
P(Ot+7|+ap,t)=(1-2q)(1—e™ "), (2 k a a
The stationary current is then evaluated via the current
7'>O, 0<q<1/2, v>0. densities
The process is completely determined by Hasand(2). in(¥)=[h(x)+a,]P3(x),

The mean value of (t) and the correlation function are

=3 .0, 11
(H(0)=0, ® 2 I Y
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whereP;(x) is the stationary probability density for the state The latter corresponds to E(®) in the case wheré(t) is a
(x,a,). It follows from Eq.(9) that the curreng is constant.  dichotomous noise. This has been investigated in detail by
We shall assume that several authorfl1,32. In order to proceed further with the
calculations in the case of a trichotomous noise it is suitable
to impose periodic boundary conditions on the stationary
probability density

Th((aj following characteristic regions fax, can be dis- P(x)=P(x+1),
cerned:

(i) There is no current if &a,<|minch(X)|, as there is a  which converts Eq(12) to the form
stationary stable point for any state

max h(x)>|min h(x)|.

(i) In case of|minxh(x)|<a_10<ma>g(h(x) there exi_sts at J—h(x)P(x)=qa0fx+ldy p(y)i #
least one stationary stable point fi{t) = — a,, the motion to x dx| (x(1)=1)x(x)
the left is switched off and the curredtis positive.

(iii) In case ofag>max h(x) the stochastic procedgt) _ oY) (15)
can, although it should not, induce a reversal of the current. (p(1)=D)p(x) ]’

Now we shall discuss this case in some detail.

For the calculation of the stationary probability density in Where
the x spaceP(x)==,P;(x) and the stationary curreidt= x dy
const the results df31] can be applied. Notably, it is shown ¢(X) ==ex;< Vf h(y)+aq
there that if a procesg(t) satisfies the stochastic differential oty 0

X dy
’ X<X>==‘=‘Xf’(”fom

equation(8), wheref(t) is a generalized random telegraph (16)
process, the stationary probability dendityx) is a solution  The constant stationary curredtcan be specified by the
of the operator equation application of the normalization condition #(x)
J—h(x)P(x)=w(al, HP(x). 12 1
(X)P(x)=wr(aL, ")P(x) (12) JP(x)dx:l. an
0

The angular bracket§) mean averaging over the values of

the random variabla and the operatdE;1 is the inverse of Thus, a combination of Eq$15)—(17) with Eq. (8) yields
the operatot, defined by the following relation between the average of the particle
d velocity (dx/dt) and the currend:
Lagp(x)=vp(x) + G [(hO) +a)d(x)]. 13 1
<dx/dt)=<h(x)>=f h(x)P(x)dx=J. (19

0
In our Eq.(8) the random variabla takes the valuesy,
—ay with the probabilityq and the value O with the prob- |t is remarkable that in the case of a trichotomous noise the

ability 1—2q. For the stationary probability densif§(x)  stationary probability densit(x) corresponding to Eq8)
corresponding to Eq8) the following second-order differ- s determined by a relatively simple second-order linear or-

ential equation can be obtained from E#2): dinary differential equation and the behaviorRgx) can be
d investigated by the general theory of such equations. Unfor-
J(h' (x)+ v)— vh(x)P(x)+ d—x[(ag—hZ(x))P(x)] tunately exact solutions of E¢14) can be obtained but in a

few cases. The simplest example of such is the so-called

d h(x) adiabatic limitv—0. For simplicity, we assume that(x)
&[m (h'(x)+ v)J— vh(x)P(x) has only one minimum atx=d (0=x<1). If ag
>max h(x), then the stationary probability density is given
d , by
+ 3L @— ()P ()]
C+ _ 1-2q)> S(x—d—KkK)
P(x)= + +(1- —d—k),
d P(x) ) apth(x) ap—h(x) ( q K
=(1-2q)vai—| ——|, 14 (19
(A-20va5g | (14)
where the constans.. are determined by

where

C. f Lodx (20

h’(x)z%h(x). 0ap=h(x) |

B ) . andd+k in the arguments of thé function denote the lo-
In the case ofg=1/2 (a dichotomous noigethe last term  c4iinns of the minima o¥/(x). This leads to the following
vanishes and Eq14) is satisfied by every solution of the expression for the current:

equation

s [N HC ) NNCZCl

d
I’ () + 1)~ rh(OP() + [ (@5—h())P(x)]=0. . 200
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It is easy to ascertain that in the limag— max h(x) the dV(x) 1
current isJ=C, and therefore is po_sitive. laﬁ0>m_a>g< h(x) _ dx 2d(1-d)
thenJ tends to zero and the following asymptotic equation
holds true: )—(X_d_ € Inw/d/(l—d)>
X | tan —1+2d|,
2q (1, 1 ¢
J= a_gjo h*(x)dx+0 a_3>' where 0<x<1 ande>0. For a smalle/d<1 the shape of

the corresponding potential is close to that of the sawtooth,
The effect of the steepness of the slopes of the potevitial ~ with h(d)=0.
stressed by the integral &f, vanishing if the potential is The forceh(x) being periodic, the stationary distribution
symmetric. Trichotomous noise is a particular case of the?(x) as a solution of Eq(15) is also periodic and it suffices
kangaroo process, at which the leading-order correction ofo consider the problem in the intend,1). The force cor-
the current has been investigated by Doering, Horsthemkeesponding to the potential, EqJ), is
and Riordan11] in the white noise limit. It is notable that

there the leading-order correction dfs also proportional to a4V b:=1/d, xe (0d),
i 3
an integral ofn®. . o=— )L 11-d), xe(d),
In the case ofmin,h(x)|<ay<maxh(x) it follows from dx
Egs.(9)—(11) that 0, x=0, X:d(25)
"mo J=C,>0. (22) Evidently, from Eq.(14) the following solution can be ob-
" tained:

Equation (20) shows that as, grows, the current grows -
monotonically. P(x)=P(x)+pd(x—d) (26)

with p=const and
I1l. EXACT SOLUTION FOR A SAWTOOTH POTENTIAL
A A
The integral equatiofil5) can be solved exactly for some Bx) = C.eMr*+Cre"1?+J/b, xe(04d),
special forms of the potentiaV(x) only. We present an G,eMe*+ G,eM 22— J/c, xe(d,1),
analysis of the system of Ed8) for a piecewise linear

sawtooth-like potential where
14
—(x—d)/d, xe(0d) mod 1, Mi=— ————(qai—b%*ay7),
V(x) = ( ) €(04d) 23 1 b(ag_bz)(qao o)
(x—=d)/(1—-d), xe(d,1) mod 1,
14
whered e (0,1) determines the asymmetry of the potential, NziZ—C(az_cz) (qag—c’*+apy),
which is symmetric ifd=1/2. The space being left—right 0
symmetric, we may confine ourselves to the cdsel/2. As 7:=y(1—-2q)b%+qg%a3, y:=y(1-2q)c’+q’a;

our starting equatiofil5) has been derived at the assumption o ) . )

thatV(x) is differentiable at every point, we have to considerandi=1,2 withi=1 corresponding to the sigit andi=2

the sawtooth potential as a limit case of a smooth potentiafo the sign—, respectively. The curretand the five con-

so that stantsp, C;, G; (i=1,2) are determined by Eqgél5) and
(17). By substituting Eq(26) in them we get a nonhomoge-

h(d+k)=h(k)=0, (24)  neous system of six linear algebraic equations. Hence, the

problem is solved at that and the evaluation of the current

with k being an integer. Such a potential can characterize, focan be handled by linear algebra. The exact form of the

example, the force stationary current is

_ 4vqynbc[A(b,c)—A(c,b)]
= A(c,b)B(c,b)+A(b,c)B(b,c)—4vqyn(b—c)[A(b,c)—A(c,b)]’

(27)

where
A(b,c)=agyn{bc(a; + az) — (1—2q)[b(B1+ B) + (e + a) 1} + ye( ap— ay)[ (1—20)(b?—qad) + qa3b]
— 7b(1-2q)(B8,— B1)(qaj—c?),

B(b,c):=yn{2qagb(B1+ B2)+(1—2q)[b(B1+ B)(c—2qaj/c) — c(a;+ a,)(b—2qag/b) I} + nag( Bo— B1){b[c*(1—2q)
+2g%a3]— (1—2q)b[(1—3q)c+2qg2a3/c]} + yaoc(1—2q)(ay— ay)[ (1—3q)b+ 2g%a3/b], (28)
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and

ai==eXLX)\1i/b)—l, ﬁi::exr(—)\Zi/C)—l, i=1,2.

It should be noted that in the caseagf>b and the finite parameters the denominator in®@) is always positive. Obviously,
if the potential is symmetrick{=c), there is no current in the stationary state.

It is also of interest to consider the paramegigcharacterizing the probability that the state of the system coincides with the
deterministic stationary state=d (stationary stable point at the absence of noi$ais reads

_(1-2q) ag[by(a,— ay)+cn(B— B1)I[bA(c,b)+cA(b,c)]—[A(b,c) —A(c,b)]?
p= ag A(c,b)B(c,b)+A(b,c)B(b,c)—4vqyn(b—c)[A(b,c)—A(c,b)]

(29

It follows from Eq. (29) that in the case of a dichotomous
noise Q= 1/2) the parametgs vanishes for ang,, v, andd.
It is evident from physical considerations thatp<1
—2q should always be valid.

Substituting Egs(25) and(26) into Egs.(17) and(18) we
can see that the range dfis bounded

(1-p)b>I>—-c(1—p).

p~1-2q. (32)

This result can be understood intuitively by means of @}.
the random variabla takes value 0 for a sufficiently long
time to allow the deterministic stationary state be formed.

B. The white noise limit

In the trichotomousé-correlated limit (i.e., v—o, ag
— o, s0 thato?=4q aé/v is finite) Egs.(27) and(29) reduce,
respectively, to

8( b2 _ CZ) e2/a'2

Hence, the current is greater thartc and less thai for all
values ofv, ag, ande¢.

When investigating by Eq27) the dependence af on
the correlation timer;, four different types of the graphs

J(v) emerge. In Fig. 1 these four types are represented as I~ 7 2279 e=5, (32
depending on the parametaraanday. (i) If q=0.3 anda, vor(e” —1) q

=5.2, no reversals of the current are met and with increasing 2

v the current decreases sigmoidally and monotonically to 0. p~(1-2q) (b+c)e (33
(i) If g=0.3 anda,=7, we obtain a nonmonotonic behav- vqo(e?e 1)

ior, where the ratchet current reaches the minimum and
maximum at a finitev. The current is not reversed eith€ii)  The current and the parameein this limit are proportional
If g=0.3 anday=9, the current exhibits two reversals of the to the noise correlation time that in these cases is a measure
direction at increasing values of. (iv) At q=0.1 anda,  of the distance from equilibrium. The current in E§2) has
=9 we have a single reversal from positive to negative and factor dependent on the noise statistics via the flatness pa-
finally J approaches zero from the negative side. We interrametere. If the statistics of the trichotomous noise corre-
pret these four qualitatively different shapesJ¢) as dif-  sponds tap>2, i.e.,q<1/4, the sign of the current changes
ferent phases in the phase spageag). in complete accordance with the results[@fl] where the

It should be noted that for other model systems the samgeneral kangaroo process is considered. It should also be
four phasesi.e., the typical forms of the graph d{»)] have  noted thatp decreases monotonically to the value (1
been reached by several authors by means of numerical cal-2q)bc/(2vq) as the noise intensity grows. Currehtakes
culation[17-19. an extremum atr?~0.7765.

The behavior of] at different asymptotics and the condi-
tions of the occurrence of the phases will be considered in
Secs. IV and V.

IV. ASYMPTOTIC REGIMES

Here the asymptotic regimes following from Eg7) will
be studied.

A. The long-correlation-time limit
At the adiabatic limitv—0 Eq.(27) takes the form
2q(b%—c?)
EEEUED

(30

FIG. 1. The currend vs the switching rate. The curveg1)—(4)

that tends monotonically to zero ag—> or g—0. Equa-
tion (30) follows also immediately from Eq$20) and(21).
For p we can get

correspond to the following parametefd): q=0.3, a;=>5.2; (2):
0=0.3,2,=7;(3): g=0.3,89=9; (4): g=0.1, a5=9. In the cases
(3) and(4) current reversals occur.
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C. The large-flatness limit dently, homogeneous and within the inter/@J1) the center
of mass is ato=1/2. Let the noise in the initial time be at
the statea=0. The first time when the noise turns to either
a=ay or a=—ag is denoted byty. The center of mass at
time ty is located aty. It is easy to find that the center of

_[eb@ob) g veato]ly o1 (34 ~Mass is shifted byAy=y—y

In the case ofy—0 (¢—°) the current angh are found
to be

J~ yq{[eV/C(aO*C) —e” vib(ag+ b)] -1

, , —(b—c)/2bc, to=1/c?,
We can see that the current is reciprocal to the flatness pa- ) 5 ) )
rameter. [fag<aoy.,=b+c, thenJ is positive at any. If the Ay=1q LD —to(1-ctof2), 1b <to=1/c?,
noise amplitude exceeds,, then the current reverses to —t3(b%2—c?)/2, to<1/b2.

negative atv>v*. The point of reversal*, being a solution

of a transcendental equatidfv*)=0, can in a general case  In the case of a trichotomous noise the probabNigt )

be found by a numerical calculation. Some of its propertieghat in a certain time interval (Q,) the transitionsa=0
can be analyzed analytically, though. As the noise amplitude~a= *=a, do not occur, is given byV(ty) = exp(—2qrty).
grows within the regionag>b+c, the parameten* de- The probability that such a transition occurs within the time
creases monotonically from infinity to zero.df>b+c, the interval (ty,tg+dtp) is 2qvdty. Consequently,

following asymptotic formula is valid:

v*~2(b+c)?/al. (35) (Ay)=2qv fo e~ 29"0Ay(to)dty. (40)
In the vicinity of the critical pointq(b+c)<a,—(b+¢)  considering that the average number of transitions per unit
<1, the following asymptotic formula can be used: of time into the O state is @(1— 2q), we obtain
2_Rh2
LG R @6 J=2qu(1-2q)(Ay).
2a, apg—bc

When calculating by Eq40) the mean value of the shift of
the center of mass we can reach the earlier result(&g).
Thus, at sufficiently large noise amplitudes and the correla-
For a;—< and for fixedv andq, i.e., for the case of a tion times satisfyingv<2q(1—2q)aj the behavior of the
very large noise intensity, the current saturates at the valugurrent is determined only by the “flashing barrier” effect.

1-2q
2qv

D. The large-amplitude limit

_ 2 _ 2
[b2(1—e 2% —c2(1—e 2v9/)], E. The fast noise limit

(37 In the fast noise limit we allow to become large, hold-

. ing all other parameters fixed, and use' as the smallness
It can be easily seen thd<0 at any values of the param- 5 ameter in our expansion. Thus, in the lasgdimit the
etersqe (0,1/2_) gn_dve (0,°). This result is not inconsistent o\ rrent is exponentially small:
with Eq. (30)—it is just that the current reversal occurs at the
switching ratev=0. Obviously,J tends to zero asq— or
as vg—0. Consequently, there occurs a minimumJgy).
For b>c, the minimum ofJ(v) occurs atv,,~cbh/+2q and
Jmin=—(1—2q). In a general case,, can be found by the andJ tends to zero ag— . It is remarkable that for small

I~-

Ve)‘ZZ/C, a2>B2,

J~ _
—ve )‘12/b, B> as,

(41

following transcendental equation € 2qv,,): correlation time the current cannot be expanded into a power
S s N series with respect to i/ The current is positive for,
(x+b%)e ™ =(b"=cH)+(x+cHe ™. (38) > pg, and negative foB,> a,. The latter can happen only if

the flatness is greater than 2, i.e.qi 1/4, anda, is greater

than a critical valuea,
(b®—c%)*(1-4q)
1+ \/1_ (1- 29202+ 22’
(42

Parametep behaves asymptotically as

1-2
p~ A b(1-e 2" 4 c(1-e 2], (39) , (1-2g)(b*+c?)
2vQq aC:W

We can see that, as the correlation time grong—0, the
share of the particles concentrated in the minimum of th
potential grows monotonically from zero to-12q.

It is quite remarkable that in case of fixedand 7. the

E‘Obviously,ac>b+ ¢, where the sign of equality corresponds
toq=0.

In general, at large values ofthe parametep stabilizes

Cufre”t satur'ateglto a finitg value at great noise a'rnplﬁtude:‘sﬂ a finite value. The expression for this being cumbersome
This counterintuitive result is due to both an effective mho-We bring it but for the limit ofysqag— o

mogeneous diffusion, which becomes more homogeneous
with increasinga,, and a so-called “flashing barrier” effect bc

as stated if17]. Let us look into the latter statement more P*(l_ZQ)W- (43)
closely with the assumptions thag>b?/q?(1—2q) and » 0

<2q(1-2q)aj. For these assumptions the probability dis- Thus, at a small correlation time and large noise amplitudes
tributions P3 f(x) at the noise source statesa, are, evi-  p—0.



PRE 61 CURRENT REVERSALS IN RATCHETS DRIVEN BY ... 6365

1 at a finitev. The curve(b) whereapg=a,(q), is given by the
system of transcendental equations

A(buc)|a0:a2(q):A(Cub)|a0:a2(q) )

. (46)

ag=2a,(a)

d
—A(C,b))

[Fa00)
ﬁA(b,C) 7

ag=a(q)
whereA(b,c) has been defined in E(RY).

(3) as(q)<ag<a.(q). The current exhibits a double re-
versal of the direction for increasing valuesiofThe current

FIG. 2. The @,a,) phase diagram for the dependence of theStarts from a positive value, decreasing to a negative local
stationary currend on » in the case ofi=0.25. The shape of the MiNiMum, next it grows, attaining a positive maximum, and

4 5 6 7 8 9 10 11 12 @y

function J(v) for the different domains formed by the curv@—  then J approaches zero as—«. The curve(c) where a,
(c) are sketched. Current reversals occur in domain Nos. 3 and 4=a.(Q), is given by the explicit result of Eq42).
The curvesa), (b), and(c) are determined by Eq$45), (46), and (4) In this domainay>ac(q) the flatness of the noise is
(42), respectively. greater than 2. A single current reversal occurs, and
—0 asyv— o,
F. The dichotomous Markovian noise It should be noted that though the phase boundargan

For dichotomous noises=1/2, the exact stationary cur- be described by an exact analytical formula, the boundary
rent and the parameterare lines (a) and (b) cannot. The latter can be expressed from

Egs. (45) and (46) by numerical methods or by using ap-

vbe(az—Bo) proximate equations. Fotb), the following approximate
aghca,B,—v(b—c)(ay,—B>) equation seems acceptable:
2qb? 3 2+2¢c
where 20 4) ~ e _ 2
as(q) 1-2q 1+2 exp 3b 1]|+(b+c)~.
ay=exfgvl/(aj—b?)]-1, (47)
Br=exd vl(a—c?)]-1. According to numerical calculations with various values of

the system parameters (0881<0.49, 0.00%&(g=<0.4995)
As the correlation time decreasdgjecreases monotonically the application of Eq(47) does not cause the relative error to
from J=(b?—c?)/[a3— (b—c)?] to zero. No current rever- exceed 1%.
sal occurs. Equatio4) accords with the expression [ith1] At very large values of the flatness parameter, when
for the stationary current in the case of a dichotomous noise;>0, all three phase boundaries approach each other
if its general smooth potentidl(x) is replaced by our po-

tential Eq.(23) and the second derivative ®(x) is substi- ay(q)~ay(q)=~a.(q)=(1+q)(b+c)+0(q?). (48
tuted to the delta functiond?V(x)/dx?*— (b+c)&(x—d), . _ _
respectively. Notably, unlikea,(q) anda.(q), the functiona,(q) is

not always monotonically growing but may have a local

maximum and a minimum. It is interesting to note that in the

domains(1-3) p is a monotonically decreasing function that
Next, we shall consider the most general properties of thetabilizes at a nonzero value asggrows, but in the domain

stationary currenfl(v) in the phase space of the noise pa-(4) p is nonmonotonic and has a minimum at a certain finite

rametersq and ay. Proceeding from Eq927) and (28) we  value of v.

can distinguish between four domains in the two- For the calculation of the current reversal points,

dimensional phase spacg, &) (see Fig. 2 J(v*)=0, by numerical calculation we propose the tran-
(1) b<ag<ay(q). In this domain the curremt(v) is posi-  scendental equatioA(b,c)=A(c,b), i.e.,

tive and decreases monotonically to zeravdacreases. The

V. REVERSALS OF NOISE-INDUCED CURRENT

ratchet model with dichotomous noise belongs here as a limit Y m(ay+ as) +qag(as—aq)]
case. The boundary of the domaa) is given by the system
of transcendental equations =nly(B1t B2) +da(B—B1)]. (49
d The dependence of these points on the noise amplityde
(ﬁJ(V)) =0, and the flatness paramete+ 1/2q is illustrated in Fig. 3. As
ap=2,(q) the noise amplitude, grows, a current reversal first appears
e at the noise amplitude valug,=a,(q). When the flatness
(_2 J(V)) =0. (45)  parameter is less than 2, the growth af always causes
v ag=a,(q) double reversal. The current changes its sign at the two noise

correlation time valuesr;y =1/v7 and 75 =1/v5 . An in-
(2) a;(g)<apg<a,(q). The stationary current(»)>0 is  crease of the amplitudeag— o) causes the first solution of
bimodal and reaches a local minimum and a local maximuntg. (49) »; to drop monotonically to zero, while the second
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@y the current tends to infinity at a finite noise amplituag
40 =a.(g)—at greater amplitudes there is only one reversal of
35 the current. Ag]— 1/2, the value ofv* corresponding to the
30 critical amplitudea,(q) decreases and saturates at a finite
value v§ . The exact value of the paramete] is given by
25 the solution of Eq(38) with v§ =x.
20 In the case of a large potential asymmeb; c, the value
15 of v5 can be estimated by the following equation:
4
10\ (4) 5 )
2c 1lc
5 (5) VS'\"’J\/EbC 1+¥+ W) (50)
0 25 50 75 100 125 150 lnv*

Though in general, the zero poini§ , of the currentl(v)
k v cannot be expressed by elementary functions, at certain con-
corresponding to the current reversal poidie*) =0, for several  gyraints rather simple approximate solutions can be found for

flatness values. The curvé$)—(5) correspond to the valu_es of them. Here we give two such formulas, neither of them ap-
=0.25 andq=0.45, 0.255, 0.245, 0.2, and 0.01, respectively. Theplicable near the phase boundaby, a,>a,(q).

minima of the curves lie at the noise amplitude vahye=a,(q) . : .
[see Eqs(46)]. As q— 1/2, the value ob* corresponding tay(q) The first reversal point of the current can be given as

saturates av§ [Eq. (38) with x=v§]. If q<1/4, then at a fixed
noise amplitudea,™>a, [Eq. (42)] only one current reversal point 2b?c? b2+ c? (. 29

FIG. 3. The noise amplituda, vs log of the switching rate*

*

. ~ 1+
»* occurs. "1 (1-2q)a3 a5(1-2q)\ 3

}. (51

solution v} increases monotonically to infinity. As the flat- The aforementioned monotonic decreasevbfat a growth
ness parameter decreases, the critical amplitude) in-  of ejthera, or ¢ can be deduced easily. At fixeg andq it
creasesy] , corresponding to a fixed amplitude, increasescan be seen that* increases as the potential asymmetry
monotonically, butvs monotonically decreases at a decreasgrows, i.e., asl decreasefsee Eq(25)].

ing ¢. In the case ofp>2, v7 behaves the same way, but  For the estimation of the high values of the second rever-
the switching rate’; corresponding to the second reversal ofsal point of the current the following equation would do:

. b2c(af—b?(af—cAIn[(1+qay/y)/(1+qag/7)]
"2 (@l — c?)(b?+agn—qaj) — bX(ai—b?)(cP+agy—qag)’

(52

with v* >b(ay+b). Evidently, Eq.(52) is applicable only in qal

(b?+c?)(ai—a)d)

region (3) of the phase spacesee Fig. 2. If condition a, vy = ~(a§—a§)*1.
>b/q is also fulfilled, Eg.(52) can be given a more trans-

parent form: Most likely, the different values of the “critical indices”

. ) . 5 211 indicate different physical mechanisms for the phase transi-
v; ~2qag(1—-2q)[49—1+(b“+c”)(6g—1)/8g“ag] (5-3) tions at the critical phase lings) and (c).

The monotonic growth ofv} at the growth of both noise VI. CONCLUDING REMARKS

amplitude and flatness parameter immediately follows from  Apove. we have presented some analytical and exact re-
Eq. (53), wherev; drops if the potential asymmetry grows. gyits for the dynamics of an overdamped Brownian particle
In the vicinity of the critical linegb) and(c) (see Fig. 2 in a sawtooth ratchet potential subjected to external colored
we can see that the dependencevpfand v; on the noise  trichotomous fluctuations. A major virtue of the models with
amplitude has obtained some formally similar features to therichotomous noise is that they constitute another case admit-
second kind phase transitions, e.g.gif>1/2, b>c and a2 ting an exact analytical solution for the stationary current for

—a2, a3>a5, then any value of the correlation time.=1/v, the noise ampli-
& tude ay, and the flatness parameter Although both di-
2v5(b“+vg) h ; . .
* x4 2.2\ (a2 20112 chotomous and trichotomous noises may be too rough ap
Vi~ Vo~ = 2 (ap—ag)~(ag—a)™, PN ; : ;
a5 proximations in most practical cases, the latter is more

flexible, including all cases of dichotomous noises and, as
where the sign+ is for v5 and the sign— is for v7 . If  such, revealing the essence of its peculiarities.

1/4>q—1/4 andaj—aZ, aj<a?, then The behavior of the system, the current reversals consid-
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ered, is dominated by the correlation time. In the phase spadbe flashing barrier effect of the current has been evaluated
of the parametersg, a, one can distinguish between four only at the adiabatic limit.

domains of qualitatively different shapes of the currét), We envisage possible applications of the described cur-
characterized also by sign reverséiég. 2). Our major re- rent reversal phenomena in natural sciences such as biophys-
sults are perhaps the exact conditions for the noise paranics and microtechnology. Particles with different damping
eters leading to the sign reversalsJdfEq. (49)]. Three cir-  constants moving in the same potential and driven by the
cumstances should be pointed out at tidtthere is a lower ~Same stochastic force are controled by different effective
limit for the noise amplitude, namelg,=b+c, for smaller ~ [S€€ EQ.(7)]. This can lead to an efficient mechanism for
values of which there is no current reversal at apyande; ~ Separating particles as suggestedr,9,17. Examination

(i) the correlation time has an upper limit=1/»% , where of thg curves in Fig. 1 shows thgt two regimes of extreme
V% is the solution of Eq(38), for greater values of which sensitivity to noise parameters might be applied for separa-

there cannot be more than one current revefga);the flat- tion Burposes: fgr the c*orrelat|on t_|mer51=1/v’{ and 7,

ness parameter has a critical valge: 2—if <2, then, as — /v2» wherevi and v; are solutions of Eq(49), the

the correlation time grows from 0 t®, there can be either current reversals lead to r.ather selectlvg behawors._l\_lote that
two reversals or none, anddf>2, there can also occur one Ed- (49 enables one to find; and , with any precision.
reversal. For both slow and fast fluctuating forces we havé inally, details known about the solutions of Eg4) can be
presented approximations, which agree with the results off US€ in testing approximate methods in the theory of sto-
[11,17. It is remarkable that at sufficiently large noise am-chastic differential equations.

plitudes,a3> maxb’/q?(1—2q), v/2q(1—2q)}, the behavior

of the current is completely due to the effect of the “flashing
barrier” for all values of the correlation time and the flatness
parameter. It should be noted that in earlier papéiis19
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